Short title: Long title **Proposal:** Trace extremely fast molecular (or multi-phase) outflows in BEARS SMGs Key questions: - 1. It is important to understand how feedback happens in the most active phase at cosmic noon. - 2. The spatially-resolved study on molecular outflow at high-z is still rare. - 3. BEARS provide a unique sample to search for and study in details on extreme outflows at $z\sim2-4$. We can analyze 3–6 SMGs with the broadest CO lines ever reported in the literature (see the two reference figures). ## Necessary graphs: ## Scientific context: - 1. Select line tracers: 1) CO(3-2) or CO(4-3) for molecular gas; 2) [CI]492GHz for neutral gas; 3) [NII]205 μ m for ionized gas; 4) some absorption line(?) to measure shifted velocity. Do we need all of them? - 2. In order to spatially resolved the central starburst region, propose a physical resolution of ~ 1 kpc. - 3. The immediate objective is to measure the extent of the broad component of lines, i.e., outflowing region. - 4. With the velocity map, we can estimate the mass-loss rate, kinetic energy ejection rate, mass-loading factor, etc. ## Technical justification: - 1. Band coverage should be checked. CO(4-3) and [CI]492GHz may be covered simultaneously? - 2. Need to check the available array configuration for 1 kpc resolution. ## What sources are necessary? - 1. HerBS-200 with CO FWHM of 1290 km/s is considered with the 1st priority, - 2. HerBS-54/58/89a also have CO FWHM of ~ 1000 km/s, while they are in Northern sky (Dec of 24–28°). - 3. HerBS-77/182 are also considered, they also possess relatively large FWHM compared to the two referred table. Figure 1: Selected candidates, modified from Fig. 5 of BEARS Paper-I (Urquhart et al. 2022). Short title: Long title Table 2. Properties of continuum and line (CO or [CII]) emission for the WISSH QSOs analysed here. | ID (1) | Transition (2) | z_{cold} (3) | FWHM
(km s ⁻¹)
(4) | $ \begin{array}{c} S \Delta v \\ (\text{Jy km s}^{-1}) \\ (5) \end{array} $ | $(10^{10} \text{K km s}^{-1} \text{pc}^2)$ (6) | $L_{\text{[CII]}} $ $(10^9 L_{\odot})$ (7) | S _{cont} (mJy) (8) | |------------------------|----------------|-----------------------|--------------------------------------|---|--|--|-----------------------------| | | | | | | | (7) | | | J0209-0005 | CO(5-4) | 2.870 | 435 ± 95 | 1.4 ± 0.3 | 2.15 ± 0.46 | - | 0.38 ± 0.04 | | | CO(1-0) | 2.870 | 440 ± 85 | 0.062 ± 0.012 | 2.39 ± 0.46 | - | 0.039 ± 0.005 | | J0801+5210 | CO(5-4) | 3.256 | 685 ± 70 | 3.68 ± 0.40 | 6.99 ± 0.76 | - | <0.30 (b) | | | CO(1-0) | _ | _ | <0.095 (a) | <4.48 | _ | 0.091 ± 0.010 | | J1433+0227 | [CII] | 4.728 | 400 ± 40 | 5.40 ± 0.24 | _ | 3.72 ± 0.16 | 7.7 ± 0.3 | | J1538+0855 | CO(4-3) | 3.572 | 320 ± 90 | 0.36 ± 0.11 | 1.23 ± 0.38 | _ | <0.087 (b) | | J1549+1245 | CO(4-3) | 2.374 | 245 ± 40 | 0.27 ± 0.03 | 0.47 ± 0.05 | _ | 0.12 ± 0.01 | | J1555+1003 | CO(4-3) | 3.529 | 605 ± 90 | 0.87 ± 0.14 | 2.94 ± 0.68 | _ | 0.10 ± 0.02 | | J1639+2824 | CO(4-3) | 3.846 | 615 ± 90 | 0.92 ± 0.15 | 3.55 ± 0.66 | - | <0.090 (b) | | J1701+6412 | CO(5-4) | 2.753 | 595 ± 120 | 1.50 ± 0.34 | 2.15 ± 0.49 | _ | 0.60 ± 0.06 | | J1015+0020 (*) | [CII] | 4.407 | 340 ± 40 | 0.47 ± 0.05 | _ | 0.29 ± 0.03 | 0.60 ± 0.06 | | Comp _{J0209} | CO(5-4) | 2.881 | 600 ± 95 | 1.1 ± 0.3 | 1.74 ± 0.46 | _ | 0.14 ± 0.03 | | | CO(1-0) | _ | _ | <0.044 (a) | <1.71 | _ | < 0.014 (b) | | Comp _{J0801} | CO(5-4) | 3.271 | 385 ± 65 | 0.71 ± 0.26 | 1.36 ± 0.49 | _ | <0.30 (b) | | ****** | CO(1-0) | _ | _ | <0.058 (a) | <2.78 | _ | <0.30 (b) | | $Comp_{J1433}$ | [CII] | 4.728 | 100 ± 43 | 0.11 ± 0.02 | _ | 0.08 ± 0.02 | < 0.015 (b) | | Comp1 _{J1549} | CO(4-3) | 2.363 | 540 ± 95 | 0.29 ± 0.05 | 0.49 ± 0.08 | _ | 0.12 ± 0.01 | | Comp2 _{J1549} | CO(4-3) | 2.374 | 540 ± 110 | 0.046 ± 0.013 | 0.08 ± 0.02 | _ | < 0.021 (b) | | Comp _{J1555} | CO(4-3) | 3.531 | 370 ± 70 | 0.29 ± 0.06 | 0.98 ± 0.20 | _ | < 0.084 (b) | | Comp _{J1701} | CO(5-4) | 2.753 | 130 ± 60 | 0.50 ± 0.19 | 0.84 ± 0.27 | _ | <0.30 (b) | | Source | $S_ u \Delta V \ { m Jy~km~s}^{-1}$ | $ imes rac{M_{ m H_2}}{10^9 M_{\odot}}$ | R _{out} kpc | $ rac{V_{ m out}}{ m km~s}^{-1}$ | $V_{ m FWHM} \over { m km~s}^{-1}$ | |------------|-------------------------------------|--|----------------------|----------------------------------|------------------------------------| | 4C 05.84 | 0.1 ± 0.03 | 1.4 ± 0.2 | 8.6 | 653 ± 30 | 382.2 ± 47.4 | | 3C 318 | 0.25 ± 0.03 | 3 ± 0.3 | 20.2 | 1132 ± 44 | 528.7 ± 67.4 | | 3C 298 | 0.3 ± 0.03 | 3 ± 0.3 | 1.6 | 394 ± 64 | 624.0 ± 49.0 | | 4C 09.17 A | 0.11 ± 0.01 | 1.3 ± 0.1 | 2.8 | 852 ± 77 | 439.1 ± 122.6 | | 4C 09.17 B | 2.3 ± 0.2 | 27 ± 3 | 4.9 | 456 ± 26 | 870.6 ± 47.2 | Figure 2: Two refered studies Bischetti et al. (2021) and Vayner et al. (2021). The typical CO FWHM of these luminous QSO hosts is <800 km/s. How long to observe per source? To be checked...