Convolutional Neural Network-reconstructed velocity for kinetic SZ detection

Hideki Tanimura¹, Nabila Aghanim¹, Victor Bonjean^{2, 3}, and Saleem Zaroubi^{4, 5}

- ¹ Université Paris-Saclay, CNRS, Institut d'Astrophysique Spatiale, Bâtiment 121, 91405 Orsay, France
- ² Instituto de Astrofísica de Canarias, E-38205 Tenerife, Spain
- ³ University of La Laguna, E-38206 Tenerife, Spain
- ⁴ ARCO (Astrophysics Research Center), Department of Natural Sciences, The Open University of Israel, 1 University Road, PO Box 808, Ra'anana 4353701, Israel
- ⁵ Kapteyn Astronomical Institute, University of Groningen, PO Box 800, NL-9700 AV Groningen, the Netherlands e-mail: hideki.tanimura@ias.u-psud.fr

2022/04/25 Journal club in Kohno lab Presenter: Shuhei Inoue (M1)

Outline

- Section 1: Introduction
- Section 2: Dataset
- Section 3: Estimation of LOS
- Section 4: 'Stacking analysis'
- Section 5: Detection of kSZ signal
- Section 6: Fitting to β model and calculation of gas mass ratio
- Section 7: Discussions and conclusions

Section 1: Introduction

Sunyaev Zel'dovich (SZ) effect

- Galaxy clusters: largest gravitationally bound structures
- Sunyaev Zel'dovich (SZ) effect:
 - Caused by the scattering of the Cosmic Microwave Background (CMB) photons by hot and ionized plasma in the IntraCluster Medium (ICM)
- Classification of SZ effect:
 - Thermal SZ (tSZ) effect:
 - Due to the thermal motion of the cluster
 - Kinetic SZ (kSZ) effect:
 - Due to the peculiar motion of the cluster

kSZ effect

- Potential: constrain cosmological and astrophysical model
- Some studies use kSZ signal to measure
 - Optical depth
 - Gas mass fraction
- kSZ effect is sensitive to
 - Virialized gas
 - The gas surrounding halos
 - → suited for studying the gas distribution around galaxy clusters
 - → solve a debate "What amount of diffuse gas is present around the halos ?"

Detection of kSZ effect (1)

- Classical Method
 - 1. The pairwise method (Hand et al. 2012; Soergel et al. 2016 etc..)
 - 2. Cross-correlation method (Hill et al. 2016)
 - Redshift information is not needed.
- Most of the measurements: Matched filter or aperture photometry is needed
 - > Matched filter: (optimizes estimated S/N; with known spatial template and SZ spectrum)Melin et al.2006
 - May be biased if the assumed profile is incorrect
 - Due to uncertainty of the gas density profile
 - > Aperture photometry:
 - S/N ratio is depending on aperture
 - → Limitation: S/N = $2 \sim 4\sigma$

Detection of kSZ effect (2)

- Optimized stacking analysis (Tanimura et al. 2021 [T21])
 - Method
 - Use linearized continuity equation to estimate Line of Sight (LOS) velocity

•
$$v(\mathbf{x}) = \frac{f(\Omega)aH(a)}{4\pi} \int d^3 \mathbf{y} \delta(\mathbf{y}) \frac{\mathbf{y}-\mathbf{x}}{|\mathbf{y}-\mathbf{x}|^3}$$

- $f(\Omega) = \Omega_m^{0.55}$
- $\delta(y)$: overdensity of matter at y position
- *a*: scale factor
- *H*(*a*): Habble parameter
- The peculiar velocities to align the <u>signs</u> of the kSZ signals and stack them.

(Section. 4)

- To avoid cancelation and detect only the kSZ signals.
- Advantage: without
 - 1. assumptions of spatial distortion of gas around galaxy clusters
 - 2. aperture
- → S/N = 3.5σ (< 4σ ..)

- New approach: Convolutional Neural Network (CNN)
 - Reconstruct velosity field (Wu et al. 2021)
 - From dark matter density field in numerical simulation.
 - They show that
 - CNN approach: $|v_{\text{residual}}| \leq 150 \text{ km/s}$
 - Linear perturbation theory: $|v_{residual}| \sim 300 400 \text{ km/s}$
 - v_{residual} : difference between the predict and true velocity
 - CNN approach is more effective in the large density places.
- This paper
 - CNN approach was used extend to real data: Wen-Han-Liu (WHL) galaxy cluster
 - Training using Magneticum (hydrodynamical) simulation (Sec 2.5)
 - → estimate LOS velosity (then kSZ radial profile)

Flow: This paper and T21 approach

1. Estimation of LOS velocity

- This paper: Convolutional Neural Network (CNN) (Chap 3.2)
- T21: Linearized continuity equation

•
$$v(\mathbf{x}) = \frac{f(\Omega)aH(a)}{4\pi} \int d^3 \mathbf{y} \delta(\mathbf{y}) \frac{\mathbf{y}-\mathbf{x}}{|\mathbf{y}-\mathbf{x}|^3}$$

using Magneticum simulation

2. Estimation of **kSZ**

- Stacking method (Sec. 4)
- Null test (Sec. 4)

3. Estimation of gas-mass fraction

• β-model fitting (Sec. 6)

Section2: Datasets

2.1. Galaxy cluster catalog

- Galaxy groups and clusters
 - Total: 158,103 from Sloan Digital Sky Survey (SDSS)
 - Selection: 30,431 clusters
 - ➢ 0.25 < z < 0.55</p>

 R_{500} : the enclosed density which is 500 times the *critical* density M_{500} : enclosed mass within a sphere of radius R_{500}

- $\gg M_{500} > 10^{13.5} h^{-1} M_{\odot}$ $h \equiv H_0 / (100 \text{km/s/Mpc}) = 0.704$
 - ✓ estimated from total luminosity
 - ✓ calibrated by 1191 galaxy clusters (X-ray&tSZ)
- > No large mask by point sources and galaxies

2.2. Galaxy catalog

- Purpose: To estimate LOS velocity of WHL cluster
- Galaxy (after selection ?)
 - North hemisphere ... 953,193
 - South hemisphere ... 372,542

From

- 1. Baryon Oscillation Spectroscopic Survey (BOSS) LOWZ Galaxy
- 2. Constant-MASS (CMASS) Galaxy
- Selection
 - 0.25 < z < 0.55
 - Number of density is fairly flat

2.3. Planck maps from PR3

- Data: All-sky map from the Planck
- Data release: 2018
- Frequency: 217 GHz (tSZ null)
- Mask:
 - 1. Galactic plane and point source detected by all frequencies
 - 2. Radio and infrared point source
 - \rightarrow exclude ~50% of the sky

2.4. Planck maps from PR4

- Improvements from PR3:
 - Including foreground polarization
 - → Breaking scanning-induced degeneracies
 - Correction mismatch at all frequencies
 - Collection of 8% more data
- Half-ring data for null tests
 - Splitting into two data
 - Produced two maps

2.5. Magneticum simulation

- One of the largest cosmological hydrodynamical simulations
 - > Based on Λ -CDM model (parameter: from Komatsu et al. 2011)
 - $\checkmark \Omega m = 0.272$

 $\checkmark \Omega b = 0.046$

 \checkmark H0 = 70.4 km s⁻¹ Mpc⁻¹

Produces simulation boxes with different sizes and resolutions

✓ Largest boxsize = $2688 h^{-1}$ Mpc

✓ Number of particles = 2×4536^3

 \checkmark Uses simulation data at z = 0.47 (median redshift of WHL galaxy)

• Purpose: to train and test the machine-learning approach

3. Machine-learning reconstructed LOS velocities

3.1. Training with the Magneticum simulation

• Magneticum simulation:

- To learn the correlation between the LOS velocities of the galaxy clusters and their surrounding galaxies
- Only v_z is learned (z: LOS direction)
- Method:
 - 1. Selection: to match with WHL galaxy
 - Galaxy cluster: $M_{500} \ge 10^{13.5} h^{-1} M_{\odot}$ M_* : galacy mass
 - Galaxy: $M_* \ge 1.0 \times 10^{10} h^{-1} M_{\odot}$
 - 2. Boundary condition:
 - Clusters: in the center of $(250 h^{-1} \text{ Mpc})^3$ cubic box
 - Grid size (= voxel size):

> T21: $(5h^{-1} \text{ Mpc})^3$ > $(3h^{-1} \text{ Mpc})^3$: expected Redshift-Space Distortion (RSD) length

- > This Paper: $(10h^{-1} \text{ Mpc})^3$
- Smoothed by a Gaussian kernel of $2h^{-1}$ Mpc
- \rightarrow e.x.) in T21, galaxy overdensities $\delta(y)$ are calculated

3.1. Training with the Magneticum simulation

- Method: (continue)
 - 3. Sprit simulation box:
 - $(25^3 h^{-1} \text{Mpc})^3$ into 8 independent regions
 - 7 for the training and valudation ($N_{galaxy} = 418,374$)
 - 1 for the test ($N_{galaxy} = 59,767$)
 - 4. Training the LOS velosity:
 - Input a series of 25³ voxels (overdensity fields) into CNN

3.2 Neural network architecture

For 3layer: 16,32,64 Filter

3.3. Test with the Magneticum simulation

3.4. Apply for real (WHL) galaxy clusters

Method	LOS velocity
CNN&T21 (WHL clusters)	$V_{CNN} = 0.86 V_{T21} + 41.7$
CNN (Mag. sim. with RSD)	$V_{CNN} = 0.95 V_{true} + 5.7$
T21 (Mag. sim. with RSD)	$V_{T21} = 1.14 V_{true} - 41.0$

 $\frac{0.86 \sim 0.83}{\text{from WHL clusters}} = \frac{0.95}{1.14} \quad \begin{array}{l} \text{CNN (Mag. sim. with RSD)} \\ \text{T21 (Mag. sim. with RSD)} \end{array}$

The results of Magneticum simulation and WHL galaxy clusters are similar.

4. Stacking analysis

4. Stacking analysis

- 1. Filter the Planck PR3 & PR4 map
 - primordial CMB fluctuation: ~100 μK
 - kSZ signal: ~1 μK
 - → Filter is essential to reduce contamination
 - Filter function
 - I < 360 (> 30 arcmin): 0
 - I > 720 (< 15 arcmin): 1
 - 360 < I < 720: connect smoothly
 - → CMB fluctuation reduced to ~40 µK

2. Placed each cluster in the center of the 2D grid

•
$$-10 < \frac{\theta}{\theta_{500}} < 10$$
, (10x10 bins)

- R_{500} : Radius of galaxy cluster up to 500 times the critical density at the redshift z
- θ_{500} : angular distance up to 500 times the critical density at the redshift z

3. Stacking of the grid maps (weighted by the LOS velocity)

•
$$T(R) = \frac{\Sigma_i T_i(R) \times v_{i,\text{LOS}} / \sigma_i^2}{\Sigma_i |v_{i,\text{LOS}}| / \sigma_i^2}$$

- $T_i(R)$: The temperature value of the *i*-th cluster at the radial distance
- $v_{i,LOS}$: LOS velosity of the *i*-th cluster
- σ_i : Variance of the temperature values of the *i*-th cluster

When $v_{i,LOS} < 0 \rightarrow \text{positive kSZ}$ When $v_{i,LOS} > 0 \rightarrow \text{negative kSZ}$

Both are negative effects for the T(R)

Except for the kSZ, signals are canceled.

5. kSZ detection from WHL galaxy clusters

5.1 kSZ detection with Planck PR3&PR4 maps

the 30,431 WHL galaxy clusters

S/N
3.5σ
4.7σ
4.9σ

- S/N ratio of CNN is higher than T21
 - \rightarrow CNN is suitable for kSZ detection. (?)
- S/N ratio of CNN(PR4) is slightly higher than
 - Probably because PR4 have less statistical and systematic error than PR3

• Null tests: 5.2 kSZ detection with Planck PR4 maps

- 1. Place the center of the galaxy clusters at random positions on the sky
 - repeated 1000 times
 - assess the *rms* fluctuations of foreground and background signals
- 2. Randomly shuffled LOS velocity of the galaxy clusters and they stacked
 - repeated 1000 times
 - evaluate mean and standard deviation

Fig.5 3.
$$(T_{217}^{HM1} - T_{217}^{HM2})/2$$
 T_{217}^{HM1} : half mission 1(2) planck map at 217GHz

Average of the three tests consistent with $0 \rightarrow$ unbiased measurements

• Goal:

Modeling of kSZ measurement

- Estimation of gas-mass fraction
- Relative variation of CMB temperature due to the kSZ

From velocity-weighted
kSZ radial profile
$$\rightarrow \frac{\Delta T_{kSZ}}{T_{CMB}} = -\sigma_T \int n_e \left(\frac{\nu \cdot n}{c}\right) dl \simeq -\tau \left(\frac{\nu \cdot n}{c}\right) + From average LOS measurement of WHL galaxy clusters (Sec 3.4)
 β -model was corrected was corrected with the sign was corrected to the sign was correcte$$

- σ_T : Thomson scattering cross section n_e : Electron number density $v \cdot n$: LOS velocity
- $\boldsymbol{v} \cdot \boldsymbol{n}$ correlation length (~ 80 h^{-1} Mpc)
- n_e correlation length (~ 5 h^{-1} Mpc)
- $\rightarrow v \cdot n$ can be regarded as constant

β-model:

$$n_e(r) = n_{e,0} \left[1 + \left(\frac{r}{r_c}\right)^2 \right]^{-\frac{3\beta}{2}}$$

- $n_{e,0}$: the center electron number density
- $\beta = 0.86$
- $r_c = 0.2 \times R_{500}$

: core radius of the electron distribution

From South Pole Telescopes clusters (Plagge et al. 2010)

Optical depth:

$$\tau(R) = \sigma_T \int \frac{2rn_e(r)}{\sqrt{r^2 - R^2}} dr$$

R: tangential distance from a galaxy cluster

$$l = \sqrt{r^2 - R^2}$$

$$dl = \frac{rdr}{\sqrt{r^2 - R^2}}$$

$$\tau(R) = \sigma_T \int_{-L}^{L} n_e(r) dl = \sigma_T \int_{-R}^{d} \frac{2rn_e(r)}{\sqrt{r^2 - R^2}} dr \quad (?)$$

Optical depth and gas mass:

7. Discussion and Conclusion

Gas-mass fraction: comparison with other methods

Paper	Object	Galaxy clusters	Method	Z	f _{gas,500}
This paper	kSZ	WHL clusters	CNN&stacking	0.25-0.55	0.09 ± 0.02
Tanimura et al. 2021	kSZ	WHL clusters	LCE&stacking	0.25-0.55	0.12 ± 0.04
Soergel et al. 2016	kSZ	DES redMaPPer cluster catalog	Pairwise method	< 0.65	0.08 ± 0.02
This paper Tanimura et al. 2021	-	(WHL clusters)	Magneticum Simulation	~0.47	~ 0.13
Nelson et al. 2019	-	?	IllustrisTNG (TNG300-1) simulation	?	~0.13
Gonzalez et al. 2013	X-rays	Abell catalog	Spectral Fitting Surface Brightness Profile Fitting	~0.1	~0.1

- $f_{gas,500}$ of this paper and Soergel et al. (2016) are lower than from the hydrodynamical simulations
 - but, consistent with $\sim 2\sigma$
- kSZ and X-ray measurements are consistent

Unknown: Discrepancy fraction of gas mass

- Lim et al. (2020) claims that $f_{gas} \simeq f_{baryon} = 0.16$ (?)
 - \rightarrow not consistent with this paper, Soergel et al.
 - (2016), and Gonzalez et al. (2013)
 - ✓ kSZ measurement
 - ✓ z ~ 0.12
- Possible Reason:
 - Difference between z ?
 - Lim et al (2020): z ~ 0.12
 - This paper and Soergel (2016): z ~ 0.5
 - <u>But</u>, Gonzalez et al. (2013): $z \sim 0.1 \simeq 0.12$
- Schaan et al. (2021): 6.5σ
 - ✓ Atacama Cosmology Telescope (ACT) DR5
 - ✓ z~0.55 (CMASS), z~0.31 (LOWZ)
 - ✓ Stacking method

Future works: The CNN approach will be applied to ACT data.

Lim et al. (2020) Figure. 4

Summary:

- The CNN new approach to estimate LOS velosity (then kSZE) was used
- The CNN approach was less sensitive to RSD than the T21 approach
- Average of the three Null tests using Planck PR4 is consistent with 0.
 - ➤ → It was found to be unbiased measurement.
- S/N ratio of CNN (4.7 σ ; PR3) is higher than that of T21 (3.5 σ ; PR3)
- S/N ratio of CNN (using PR4) is 4.9σ
- $\tau_{e,500} = (2.0 \pm 0.4) \times 10^{-3}$, $f_{gas} = 0.09 \pm 0.02$ were estimated
 - > lower than from the hydrodynamical simulations ($f_{gas} \sim 0.13$), but $\sim 2\sigma$
 - > Consistent with X-ray measurement ($f_{gas} \sim 0.1$) by Gonzalez et al. (2013)
- The reason of the Discrepancy fraction of gas mass claimed by Lim et al. (2020) was still unknown.

My Questions

- How accurate is the β -model fitting ?
 - No matter how much we improve the accuracy of kSZ signal detection, we cannot get accurate parameters if the β-model fitting is uncertain.
- How about cross-correlate method instead of stacking method ?
 - Stacking method (T21) S/N=3.5σ may be not so good compared to Hill et al.
 2016 S/N= 4σ
 - But of course, simple comparisons cannot be made because of the difference in the observations.
- What about the possibility of the CNN approach Improvement ?
 - e.g.) Fine tuning of the boundary conditions