Masi et al., 2021, "The COSmic Monopole Observer (COSMO)" https://ui.adsabs.harvard.edu/abs/2021arXiv211012254M/abstract

★ Mele et al., 2022, "Measuring CMB Spectral Distortions from Antarctica with COSMO: Blackbody Calibrator Design and Performance Forecast"

https://link.springer.com/article/10.1007/s10909-022-02874-x

Kohno-Lab Journal Club 2023/02/28 Shinsuke Uno (D2) Journal of Low Temperature Physics (2022) 209:912–918 https://doi.org/10.1007/s10909-022-02874-x

Measuring CMB Spectral Distortions from Antarctica with COSMO: Blackbody Calibrator Design and Performance Forecast

```
L. Mele<sup>1,2</sup> · E. S. Battistelli<sup>1,2</sup> · P. de Bernardis<sup>1,2</sup> · M. Bersanelli<sup>3,4</sup> ·
F. Columbro<sup>1,2</sup> · G. Coppi<sup>5</sup> · A. Coppolecchia<sup>1,2</sup> · G. D'Alessandro<sup>1,2</sup> ·
M. De Petris<sup>1,2</sup> · C. Franceschet<sup>3,4</sup> · M. Gervasi<sup>5,6</sup> · L. Lamagna<sup>1,2</sup> · A. Limonta<sup>5,6</sup> ·
E. Manzan<sup>3</sup> · E. Marchitelli<sup>1</sup> · S. Masi<sup>1,2</sup> · A. Mennella<sup>3,4</sup> · F. Nati<sup>5</sup> · A. Paiella<sup>1,2</sup> ·
G. Pettinari<sup>7</sup> · F. Piacentini<sup>1,2</sup> · L. Piccirillo<sup>8</sup> · G. Pisano<sup>1</sup> · S. Realini<sup>3,4</sup> · C. Tucker<sup>9</sup> ·
M. Zannoni<sup>5,6</sup>
```

Abstract

COSMO is a ground-based instrument to measure the spectral distortions (SD) of the Cosmic Microwave Background (CMB). In this paper, we present preliminary results of electromagnetic simulations of its reference blackbody calibrator. *HFSS* simulations provide a calibrator reflection coefficient of $R \sim 10^{-6}$, corresponding to an emissivity $\epsilon = 1 - R = 0.999999$. We also provide a forecast for the instrument performance by using an ILC-based simulation. We show that COSMO can extract the isotropic Comptonization parameter (modeled as $|y| = 1.77 \cdot 10^{-6}$) as $|y| = (1.79 \pm 0.19) \cdot 10^{-6}$, in the presence of the main Galactic foreground (thermal dust) and of CMB anisotropies, and assuming perfect atmospheric emission removal.

Background: CMB spectral distortions

Processes in the thermal history of the universe

- Interaction of CMB photons with plasma
 - Described by Kompaneets eq.

$$\begin{split} \frac{\partial n}{\partial y_{\gamma}} &= \frac{1}{x^2} \frac{\partial}{\partial x} x^4 \left(n + n^2 + \frac{T_e}{T} \frac{\partial n}{\partial x} \right), \\ y_{\gamma}(z, z_{\max}) &= -\int_{z_{\max}}^{z} dz \frac{k_B \sigma_T}{m_e c} \frac{n_e T}{H(1+z)} \quad \text{(Sunyaev \& Khatri, 2013)} \end{split}$$

- y-type distortion: minimal comptonization limit ($y_{\gamma} \ll 1$)
- μ -type distortion: saturated comptonization limit ($y_{\gamma} \gg 1$)
- Cosmological recombination lines of H & He
- etc.

Importance

- Testing the cosmological standard model
- New physics?

Amplitude & its measurements

- Deviations from a perfect BB < 1 ppm
- Best upper limit by COBE/FIRAS (in 1990s!)

Chluba et al. 2021

Background: Future observations for CMB spectral distortions

- Future satellite missions
 - [FTS] PIXIE (NASA), PRISTINE (ESA)
 - [Polarimeter] LiteBIRD (JAXA), PICO (NASA), CORE? (ESA)
- Why Fourier Transform Spectrometer (FTS)?
 - ✓ Low-resolution spectrometry
 - ✓ Wide frequency coverage
 - ✓ Accurate absolute calibration
 - ✓ Well understood systematics
- While the final measurement must be from space, ground-based/balloon-borne experiments are necessary
 - To test methods
 - Possibly to detect the largest spectral distortions

COSmic Monopole Observer (COSMO)

- FTS (Martin-Puplett) with resolution of ~ 10 GHz
- Ground-based (Dome-C, Antarctica) or balloon
- Fast elevation scan by the spinning wedge mirror to separate atmospheric emission
- Fast lumped element KID (LEKID) arrays
- 2 focal planes for 110-170, 200-300 GHz

Table 1. Scanning characteristics of the COSMO instrument^a

circle radius	5	deg	
beam FWHM	0.5	deg	
wedged mirror spin	600	$^{\mathrm{rpm}}$	
time per beam	200	$\mu { m s}$	Spinning wedge mirror
time for one forward plus one reverse sky dip	0.1	s	
maximum wavenumber	20	cm^{-1}	
sampling step	125	$\mu { m m}$	сте
resolution	5 - 15	GHz	
time to complete one interferogram	25.6	s	Low spectral resolution
sky dips per interferogram element	2		

Note: ^aExample of certainly feasible combination of wedge and roof mirror scans; faster scans are currently under consideration.

Table 2. Optical parameters of the COSMO instrument.

optical aperture diameter	220	$\mathbf{m}\mathbf{m}$	
effective focal length	726	mm	
multimode pixel antenna aperture diameter	20	$\mathbf{m}\mathbf{m}$	Small aperture
focal planes	2		
number of detectors per focal plane	9		Low angular resolu
projected pixel to pixel distance (x and y)	0.75	deg	
beam FWHM	0.75	deg	

Focal plane arrays

- 2x9 pixels at 300 mK
- LEKID + <u>multimode</u> waveguide/feedhorn for total intensity measurements
 - Absorber area ~ 8 mm x 8 mm
 - WG diameter:
 4.5 mm for LF → 10-19 modes in 120-180 GHz
 4.0 mm for HF → 23-42 modes in 210-300 GHz

LEKID design (for OLIMPO, Paiella et al. 2019)

Blackbody calibrator

Requirement

- The calibrator needs to be close to a perfect BB
- Goal emissivity ε > 1 10⁻⁶ (or R < 10⁻⁶) to detect the largest distortion signal

Solution: deformed cone cavity

- Number of internal reflections N > 6
- Internal absorber: 10mmt Eccosorb
- External body: copper

Reflectance for different incident angle α assessed by ray-tracing

Ray-tracing: R < 10⁻⁶ over 100-300 GHz

EM sim., slice of the calibrator $R(120GHz) = 3.2x10^{-6}$

Performance forecast

Methods

- "constrained Internal Linear Combination (c-ILC)" component separation method (Remazeilles et al. 2011)
- Applied to sky map simulated by PySM (Thorne et al. 2017) CMB anisotropies & Galactic thermal dust emission
- Isotropic y-distortion map with y=1.77x10⁻⁶ is added
- Added photon noise from
 - cryostat window emission (220K, 1% emissivity)
 - atmospheric emission (PWV=0.15mm)
- Assuming a perfect atmospheric emission removal
- Assuming 1 year and 30% time efficiency

Results & discussions

- ✓ Error of 110, 323 Jy/sr for 150, 220 GHz bands, respectively
- ✓ Best estimate |y| = (1.79±0.19) x10⁻⁶
 - ➔ COSMO can extract the isotropic y-type distortion
- The variance degrades as the higher order dust emission is subtracted
 - Limited by noise level and available frequency coverage

